APAC CIO Outlook
  • Home
  • CXO Insights
  • CIO Views
  • Vendors
  • News
  • Conferences
  • Whitepapers
  • Newsletter
  • Awards
Apac
  • Agile

    Artificial Intelligence

    Aviation

    Bi and Analytics

    Big Data

    Blockchain

    Cloud

    Cyber Security

    Digital Infrastructure

    Digital Marketing

    Digital Transformation

    Digital Twin

    Drone

    Internet of Things

    Low Code No Code

    Networking

    Remote Work

    Singapore Startups

    Smart City

    Software Testing

    Startup

  • E-Commerce

    Education

    FinTech

    Healthcare

    Manufacturing

    Retail

    Travel and Hospitality

  • Dell

    Microsoft

    Salesforce

    SAP

  • Cognitive

    Compliance

    Contact Center

    Corporate Finance

    Data Center

    Data Integration

    Digital Asset Management

    Gamification

    HR Technology

    IT Service Management

    Managed Services

    Procurement

    RegTech

    Travel Retail

Menu
    • AI
    • Managed Services
    • Blockchain
    • CRM
    • Software Testing
    • E-Commerce
    • Cyber Security
    • Gamification
    • Microsoft
    • Data Integration
    • Low Code No Code
    • MORE
    #

    Apac CIO Outlook Weekly Brief

    ×

    Be first to read the latest tech news, Industry Leader's Insights, and CIO interviews of medium and large enterprises exclusively from Apac CIO Outlook

    Subscribe

    loading

    THANK YOU FOR SUBSCRIBING

    • Home
    • Artificial Intelligence
    Editor's Pick (1 - 4 of 8)
    left
    The Right Technology And Reliable Partners; The Business Next Frontier

    Luke O'Brien, CIO, ISS Facility Services Australia & New Zealand

    Conquering Technological Transformation

    David Kennedy, Group CIO, Transaction Services Group

    How to Get to AI-first

    Ani Paul, CIO, ING Australia

    Legal Knowledge Management and the Rise of Artificial Intelligence

    Christopher Zegers, CIO, Lowenstein Sandler LLP

    Building an AI-Based Machine Learning for Global Economics

    Alexander Fleiss, CIO & CEO, Rebellion Research Partners LP

    A dose of our own medicine

    SABINA JANSTROM, IT DIRECTOR, DYNO NOBEL

    Insider Threat

    AI is America's best weapon for disrupting health inequities

    Michael Dowling, President & Ceo, Northwell Health and Tom Manning, Chairman, Ascertain

    right

    Cultivating Fit-For-Purpose AI

    Gautam Aggarwal, Senior Vice President, Operations & Technology, Asia Pacific, Mastercard (ASX – DHG)

    Tweet
    content-image

    Gautam Aggarwal, Senior Vice President, Operations & Technology, Asia Pacific, Mastercard (ASX – DHG)

    Artificial Intelligence (AI) is not new. These days, it would be difficult to find a business that isn’t at least attempting to use AI to improve operational efficiencies, drive innovation or enhance customer experiences. However, too often the development of AI is described in the same words commonly used to reference traditional coding: “compiled,” “built,” and “run.” This language implies that AI is built once and then adjusted now and again as needed.

    However, AI is, by design, incredibly dynamic, and it requires much more than a “set it and forget it” approach.

    Instead, developing and implementing AI-based machine learning systems requires planting algorithms in rich data soil and cultivating them. As these systems search real-time data for patterns, their insights expand with their inputs. Likewise, as their impact on businesses grow, they slowly alter their own environments.

    As a result, using traditional coding language when describing AI can not only mislead businesses about the realities of developing AI, it can severely limit the benefits produced by AI and machine learning technology.

    To avoid this, businesses need to think about this technology less in terms of ‘building code’, and more as ‘cultivating a system.’

    Growing AI

    The core utility of AI, when combined with machine learning, is to enable technology systems to turn data into meaningful insights that lead to smarter decision-making.

    As human society generates and stores more data (with an expected 100-fold increase over the next five to seven years), AI’s ability to make use of this information will be key to unlocking its power. It will enable a world of smart cities, smart homes, smart cards, and smart goods, and will serve as the refinery for the new data generated by those technology connections.

    To design fit-for-purpose AI systems in this environment, businesses need to begin by connecting the critical business opportunities AI can address—whether that be automating basic workplace tasks, creating greater customer personalization or improving a company’s security defenses— with the optimal technology solution. A company needs to both understand the data that is on hand, and design an AI and machine learning system to arrive at the desired end decisions.

    Having organized and well-labeled data sets is key, and companies should be vigilant about protecting against bias within their AI systems. Bias, particularly in terms of the quality of inputs provided, can negatively impact the quality of insights generated.

    Combating Drift

    As AI systems grow in size and impact, they become increasingly vulnerable to concept drift.

    Concept drift happens when the relationship between the inputs a model receives and its target insights change or degrade over time and become outdated, thereby making an AI model’s output less accurate. For example, at Mastercard, the growth of e-commerce has greatly expanded the sources of data we have to monitor fraud, but also expanded the opportunities for fraud to happen. Further, the size and breadth of our systems means that finding and eliminating one kind of fraud can move the market to develop new kinds of illicit activities, essentially driving concept drift in our own environment.

    To combat this, we have developed and deployed a second autonomous monitoring system, ‘AI for AI’, to oversee the machine-based system used for fraud prevention. This second independent system continually tracks the inputs and outputs of the first, and flags any anomalies that could signal drift.

    This structure sharpens our fraud monitoring and analysis, and reduces the consumer inconvenience of false declines. Mastercard’s SafetyNet product, built on our AI technology, prevents billions of dollars in potential fraud losses every year. At the same time, it has greatly improved the rate of false declines, which results in increased consumer convenience and sales transactions for merchants and issuers.

    We are also ever-improving the data we have to analyze. For example, our recent acquisition of NuData allows us to identify and feed unique biometric –for example the way one holds and handles a phone, an individual’s patterns when flipping through apps–into our fraud analytics. This helps us more accurately authenticate the user and adds to the precision of our SafetyNet monitoring.

    Planting the AI Seed

    While AI plays a powerful role in improving and enhancing our fraud mitigation capabilities, people play an equally important part in deciding how to act on new information and patterns as they arise, and adjusting the system to maintain the quality of the AI inputs and outputs.

    Finding the right talent to build and manage AI in this way is a challenge all organizations face. Like many companies, Mastercard is investing in preparing the next generation of technologists. Through programs like our signature Girls4Tech, designed to encourage school-age girls around the globe to pursue STEM careers, we’ve reached more than 400,000 young women. We recently announced a new AI curriculum to the Girls4Tech program, introducing these critical tech skills for the future.

    While much is being done to get more students involved with STEM curriculum, and tech companies are providing easier routes into new professions, companies need to invest more in upskilling workers.

    At Mastercard, learning is the new currency at all levels of the organization. We give our tech employees regular opportunities to continue learning and upskill in hot fields like AI and cybersecurity. We drive a continuous learning culture, including freeing up more time for employees to take advantage of educational opportunities and encouraging non-traditional training programs–because the best upskilling programs aren’t solely academic. They empower stronger human-machine collaborations through environments where employees experiment and learn to work with AI as it’s being applied within their industry. They are also designed with the expectation that data will constantly evolve, new patterns will continuously emerge, and more roles will be needed to manage and monitor AI and machine learning systems.

    All of this skills development requires upfront investment–and a lot of patience–but the rewards of the effort can be great.

    AI and machine learning systems promise to deliver ground-breaking insights and precision decision-making for those who focus on “cultivating” them within an organization rather than building them.

    tag

    Machine Learning

    Weekly Brief

    loading

    Featured Vendor

    • Stemly: Decision Intelligence for a Sustainable Modern and Integrated Supply Chain
      Stemly: Decision Intelligence for a Sustainable Modern and Integrated Supply Chain
    • Language Weaver: Connecting Globally by Breaking Language Barriers
      Language Weaver: Connecting Globally by Breaking Language Barriers
    • CM.com: Taking Conversational Commerce to New Heights
      CM.com: Taking Conversational Commerce to New Heights
    Top 10 AI Powered Solution Companies - 2021
    ON THE DECK

    AI 2021

    Top Vendors

    AI 2020

    Top Vendors

    AI 2019

    Top Vendors

    AI 2018

    Top Vendors

    AI 2017

    Top Vendors

    Previous Next

    I agree We use cookies on this website to enhance your user experience. By clicking any link on this page you are giving your consent for us to set cookies. More info

    Read Also

    A dose of our own medicine

    A dose of our own medicine

    SABINA JANSTROM, IT DIRECTOR, DYNO NOBEL
    Insider Threat

    Insider Threat

    AI is America's best weapon for disrupting health inequities

    AI is America's best weapon for disrupting health inequities

    Michael Dowling, President & Ceo, Northwell Health and Tom Manning, Chairman, Ascertain
    Combating IoT Challenges with Smart Choices

    Combating IoT Challenges with Smart Choices

    Sandeep Babbar, Head Of Technology Innovation, Gwa Group Limited
    Artificial Intelligence regulations and its impact on medical devices

    Artificial Intelligence regulations and its impact on medical devices

    Leo Hovestadt, Director Quality Assurance Elekta
    Blockchain: promises to revolutionise superapps and the trust factor in insurance

    Blockchain: promises to revolutionise superapps and the trust factor in insurance

    Sue Coulter, Head of Group Digital, AIA Group Julian Lo, Director of Digital Engineering, AIA Group
    Data as a Business

    Data as a Business

    Ricardo Leite Raposo, Director of Data & Analytics at B3
    How Digital Transformation Impacts Big Data Analytics

    How Digital Transformation Impacts Big Data Analytics

    Davide Di Blasi, Global Quality and Lean Director , Hilding Anders International
    Loading...

    Copyright © 2023 APAC CIOoutlook. All rights reserved. Registration on or use of this site constitutes acceptance of our Terms of Use and Privacy and Anti Spam Policy 

    |  Sitemap |  Subscribe |   About us

    follow on linkedinfollow on twitter follow on rss
    This content is copyright protected

    However, if you would like to share the information in this article, you may use the link below:

    https://artificial-intelligence.apacciooutlook.com/cxoinsights/cultivating-fitforpurpose-ai-nwid-7223.html