APAC CIOOutlook

Advertise

with us

  • Technologies
      • Artificial Intelligence
      • Big Data
      • Blockchain
      • Cloud
      • Digital Transformation
      • Internet of Things
      • Low Code No Code
      • MarTech
      • Mobile Application
      • Security
      • Software Testing
      • Wireless
  • Industries
      • E-Commerce
      • Education
      • Logistics
      • Retail
      • Supply Chain
      • Travel and Hospitality
  • Platforms
      • Microsoft
      • Salesforce
      • SAP
  • Solutions
      • Business Intelligence
      • Cognitive
      • Contact Center
      • CRM
      • Cyber Security
      • Data Center
      • Gamification
      • Procurement
      • Smart City
      • Workflow
  • Home
  • CXO Insights
  • CIO Views
  • Vendors
  • News
  • Conferences
  • Whitepapers
  • Newsletter
  • Awards
Apac
  • Artificial Intelligence

    Big Data

    Blockchain

    Cloud

    Digital Transformation

    Internet of Things

    Low Code No Code

    MarTech

    Mobile Application

    Security

    Software Testing

    Wireless

  • E-Commerce

    Education

    Logistics

    Retail

    Supply Chain

    Travel and Hospitality

  • Microsoft

    Salesforce

    SAP

  • Business Intelligence

    Cognitive

    Contact Center

    CRM

    Cyber Security

    Data Center

    Gamification

    Procurement

    Smart City

    Workflow

Menu
    • AI
    • Cyber Security
    • Hotel Management
    • Workflow
    • E-Commerce
    • Business Intelligence
    • MORE
    #

    Apac CIOOutlook Weekly Brief

    ×

    Be first to read the latest tech news, Industry Leader's Insights, and CIO interviews of medium and large enterprises exclusively from Apac CIOOutlook

    Subscribe

    loading

    THANK YOU FOR SUBSCRIBING

    • Home
    • Artificial Intelligence
    Editor's Pick (1 - 4 of 8)
    left
    The Right Technology And Reliable Partners; The Business Next Frontier

    Luke O'Brien, CIO, ISS Facility Services Australia & New Zealand

    Conquering Technological Transformation

    David Kennedy, Group CIO, Transaction Services Group

    How to Get to AI-first

    Ani Paul, CIO, ING Australia

    Legal Knowledge Management and the Rise of Artificial Intelligence

    Christopher Zegers, CIO, Lowenstein Sandler LLP

    Building an AI-Based Machine Learning for Global Economics

    Alexander Fleiss, CIO & CEO, Rebellion Research Partners LP

    Harnessing AI to Optimize Manufacturing and Logistics

    Anton Setiawan, General Manager, Information Technology, PT Panca Budi Idaman TBK (IDX:PBID)

    Building Agile, Secure and Human-Centered IT at Globe

    Raul Macatangay, Chief Information Officer, Globe Telecom

    AI Adoption in Hospitality: Striking the Balance Between Innovation, Excellence and Trust

    Phiphat Khanonwet, Head of IT, Onyx Hospitality Group

    right

    Explainable AI

    Dev Mookerjee, CTO, IBM Watson Solutions, Asia Pacific

    Tweet
    content-image

    Dev Mookerjee, CTO, IBM Watson Solutions, Asia Pacific

    The AI market is expected to reach $47 billion in 2020 and studies show that over 80 percent of global enterprises are either already implementing AI technologies or looking at doing so in the near term. Yet, there are two very clear aspects that are proving as showstoppers in a broad scale adoption of AI – the lack of skills and potential liabilities that might be created. The dearth of good data scientists and AI engineers are well discussed. This article provides my point of view on the latter.

    The perception of potential liabilities stems from the “black box” approach to AI technologies that makes them impenetrable to questioning and the level of transparency any regulated organisation needs. This also creates perceptions of a lack of trust in the systems and raises questions about their organizational and societal ethical considerations from decisions made by using AI.

    Explainable AI

    In the book “The Inevitable: Understanding the 12 Technological Forces That Will Shape Our Future”, Kevin Kelly states, “A good question is what humans are for”, I would like to extend that to – a good answer is what AI is for. To me, these two statements provide a great perspective on the value of a human and a machine working together. People excel at things like value judgement, common sense and setting goals. Machines excel at large scale mathematical calculations, pattern discovery, statistical reasoning. Together we make better decisions, gain more confident answers and have less negative bias in our decisions.

    But, as humans and machine increasingly work together, we need to ensure we have “Explainable AI” systems in place, where the algorithms used are transparent, or at the very least interpretable. In other words, we need to be able to explain their behaviour in terms that humans can understand — from how they interpreted their input to why they recommended a particular output.

    That is the only way we can build trust in them, and as a result, the only way we will adopt AI and scale in an ethical manner.

    The onus lies on us as business leaders to deploy AI systems that are transparent. Trust in AI comes from repeated accurate and understandable evidence for responses provided by the system. While “Explainable AI” is mandatory for most industries like healthcare, judicial systems or organisations that needs to be compliant to GDPR or FDA, organisations should ensure transparency of AI algorithms not because of external requirements, but rather because it is the responsible thing to do.

    Bias

    AI systems are only as good as the data we put into them. Incorrectly biased data can cause AI systems to generate unfair outcomes with potential catastrophic end results — qualified candidates can be disregarded for employment, while others can be subjected to unfair treatment in areas such as education or financial lending. As humans and AI increasingly work together to make decisions, we cannot focus on the technology of the equation alone. We must also consider the human impact to ensure that the people designing and developing the technology are representative of the societies in which the technology is intended to operate.

    Detecting and removing negative bias is not just about the machines. There is a virtuous cycle to ensuring that negative human biases are not replicated or amplified by AI. The more we work to understand AI bias, the better we get at recognizing our own bias. The more we inject bias detection mechanisms into AI, the more AI will be able to help us be less biased ourselves, as we will be alerted when the AI senses a deviation from a fair behaviour.

    Businesses won’t just adopt AI technology to stay ahead of their competitors; they will adopt it to stay relevant

    Putting Controls around AI

    As AI becomes increasingly ubiquitous in all aspects of our lives, ensuring we’re developing and training these systems with data that is fair, interpretable and unbiased is critical. In that same spirit, in October this year, IBM has released “AI Open Scale” which detects bias and explains how your AI makes decisions. This works with models built from a wide variety of machine learning frameworks which includes IBM’s Watson and other popular AI frameworks used by enterprises today.

    AI offers enormous potential to transform businesses, solve some of our toughest problems and inspire the world to a better future. While we are still in the early stages of this technological revolution, it is already proving its worth every day. One of the biggest challenges of our time is how we harness the power of any new technology to grow global prosperity without leaving people behind. Creating “Explainable AI” will allow humans and AI to grow together at scale in a responsible manner.
    tag

    Financial

    Machine Learning

    Weekly Brief

    loading
    Top 20 Prominent Artificial Intelligence Solutions Providers in APAC - 2024
    ON THE DECK

    I agree We use cookies on this website to enhance your user experience. By clicking any link on this page you are giving your consent for us to set cookies. More info

    Read Also

    Advancing the Chemical Industry through Digital Transformation

    Advancing the Chemical Industry through Digital Transformation

    Jan Mandrup Olesen, Global Head of Digital Business, Indorama Ventures
    Cultivating a Sustainable Future through Collaboration

    Cultivating a Sustainable Future through Collaboration

    Jiunn Shih, Chief Marketing, Innovation & Sustainability Officer, Zespri International
    Mastering Digital Marketing Strategies

    Mastering Digital Marketing Strategies

    Tasya Aulia, Director of Marketing and Communications, Meliá Hotels International
    Building a Strong Collaborative Framework for Artificial Intelligence

    Building a Strong Collaborative Framework for Artificial Intelligence

    Boon Siew Han, Regional Head of Humanoid Component Business & R&D (Apac & Greater China), Schaeffler
    From Legacy to Agility Through Digital Transformation

    From Legacy to Agility Through Digital Transformation

    Athikom Kanchanavibhu, EVP, Digital & Technology Transformation, Mitr Phol Group
    Change Management for Clinical Ancillary Teams: Aligning Practice with Policy and Progress

    Change Management for Clinical Ancillary Teams: Aligning Practice with Policy and Progress

    Ts. Dr. James Chong, Chief Executive Officer, Columbia Asia Hospital – Tebrau
    Digital Transformation: A Journey Beyond Technology

    Digital Transformation: A Journey Beyond Technology

    John Ang, Group CTO, EtonHouse International Education Group
    Building A Strong Data Foundation: The Key To Successful Ai Integration In Business

    Building A Strong Data Foundation: The Key To Successful Ai Integration In Business

    Richa Arora, Senior Director Of Data Governance, Cbre
    Loading...
    Copyright © 2025 APAC CIOOutlook. All rights reserved. Registration on or use of this site constitutes acceptance of our Terms of Use and Privacy and Anti Spam Policy 

    Home |  CXO Insights |   Whitepapers |   Subscribe |   Conferences |   Sitemaps |   About us |   Advertise with us |   Editorial Policy |   Feedback Policy |  

    follow on linkedinfollow on twitter follow on rss
    This content is copyright protected

    However, if you would like to share the information in this article, you may use the link below:

    https://artificial-intelligence.apacciooutlook.com/cxoinsights/explainable-ai-nwid-5825.html