APAC CIOOutlook

Advertise

with us

  • Technologies
      • Artificial Intelligence
      • Big Data
      • Blockchain
      • Cloud
      • Digital Transformation
      • Internet of Things
      • Low Code No Code
      • MarTech
      • Mobile Application
      • Security
      • Software Testing
      • Wireless
  • Industries
      • E-Commerce
      • Education
      • Logistics
      • Retail
      • Supply Chain
      • Travel and Hospitality
  • Platforms
      • Microsoft
      • Salesforce
      • SAP
  • Solutions
      • Business Intelligence
      • Cognitive
      • Contact Center
      • CRM
      • Cyber Security
      • Data Center
      • Gamification
      • Procurement
      • Smart City
      • Workflow
  • Home
  • CXO Insights
  • CIO Views
  • Vendors
  • News
  • Conferences
  • Whitepapers
  • Newsletter
  • Awards
Apac
  • Artificial Intelligence

    Big Data

    Blockchain

    Cloud

    Digital Transformation

    Internet of Things

    Low Code No Code

    MarTech

    Mobile Application

    Security

    Software Testing

    Wireless

  • E-Commerce

    Education

    Logistics

    Retail

    Supply Chain

    Travel and Hospitality

  • Microsoft

    Salesforce

    SAP

  • Business Intelligence

    Cognitive

    Contact Center

    CRM

    Cyber Security

    Data Center

    Gamification

    Procurement

    Smart City

    Workflow

Menu
    • AI
    • Cyber Security
    • Hotel Management
    • Workflow
    • E-Commerce
    • Business Intelligence
    • MORE
    #

    Apac CIOOutlook Weekly Brief

    ×

    Be first to read the latest tech news, Industry Leader's Insights, and CIO interviews of medium and large enterprises exclusively from Apac CIOOutlook

    Subscribe

    loading

    THANK YOU FOR SUBSCRIBING

    • Home
    • Artificial Intelligence
    Editor's Pick (1 - 4 of 8)
    left
    The Right Technology And Reliable Partners; The Business Next Frontier

    Luke O'Brien, CIO, ISS Facility Services Australia & New Zealand

    Conquering Technological Transformation

    David Kennedy, Group CIO, Transaction Services Group

    How to Get to AI-first

    Ani Paul, CIO, ING Australia

    Legal Knowledge Management and the Rise of Artificial Intelligence

    Christopher Zegers, CIO, Lowenstein Sandler LLP

    Building an AI-Based Machine Learning for Global Economics

    Alexander Fleiss, CIO & CEO, Rebellion Research Partners LP

    Harnessing AI to Optimize Manufacturing and Logistics

    Anton Setiawan, General Manager, Information Technology, PT Panca Budi Idaman TBK (IDX:PBID)

    Building Agile, Secure and Human-Centered IT at Globe

    Raul Macatangay, Chief Information Officer, Globe Telecom

    AI Adoption in Hospitality: Striking the Balance Between Innovation, Excellence and Trust

    Phiphat Khanonwet, Head of IT, Onyx Hospitality Group

    right

    Truly Autonomous AI Not Practical for Most Businesses

    Scott Horn, CMO, [24]7

    Tweet
    content-image

    Scott Horn, CMO, [24]7

    On the heels of 2016’s announcements of Salesforce Einstein, Facebook Messenger chatbots and the new Partnership on AI launched by the biggest names in tech, many believe that Hollywood dreams of human-like machines will become reality this year. But let’s make one thing very clear to marketers: J.A.R.V.I.S? The computer from “Her”? C-3PO? Not a single one of them will be possible in customer engagement for at least a few years to come.

    That’s not to say AI hasn’t made great progress. Thanks in large part to the availability of more data and machine learning, modern AI capabilities in the customer service realm are light years ahead of where we were with simple tasks and queries a few years ago. The rise of personal devices, wearable technologies and the Internet of Things has led to a world where computers outnumber users. In effect, marketers are identifying smarter ways to interact with consumers every day.

    And major tech companies are paving the way with significant investments in AI. Led by IBM Watson, machine-learning technologies are improving the standards of company-customer relationships online, and heightening customer expectations for intelligent, effortless experiences. Virtual assistants like Apple’s Siri and Amazon’s Alexa are adding to the hype and underpinning the self-service powers of digital customer engagement. In fact, Alexa’s 7,000 new skills took center stage at the Consumer Electronics Show (CES) earlier this month. Now is the time for enterprises to develop AI applications that add intelligence and automation to the end-to-end customer journey.

    This era of strong computing power, memory capabilities, big data, predictive analytics and machine learning moves us closer and closer to the vision of fully autonomous AI. But despite predictions of robots taking over the world–and Forrester’s projection that machines will replace 6 percent of jobs in five years–the truth is that even the smartest AI still needs people in a big way. Hollywood’s dream is still quite a ways off.

    Modern machines can neither handle every nuance of human interaction nor the diversity of human emotions

    Diversity of Customer Intents and Complex Business Processes You can’t have artificial intelligence without machine learning–which means that machines get smarter over time. However, today in order to learn, machines must still be trained by humans and they must rely on human-made models. This is especially true when it comes to understanding human intent; for example, an AI system must be trained to differentiate between “available balance” and “account balance” in a banking interaction. For a machine, that’s harder than you may think. Machine learning models can identify a person’s intent from either spoken or written input, but it’s humans who build and update the models. On the spectrum of AI capabilities, this is known as supervised learning, which is the most common machine-learning technique in use today. It’s a step beyond most of the apps today that simply follow defined rules to help a user accomplish a task, but it doesn’t come anywhere close to autonomous AI. In supervised learning, people and dataflow sequence graphs collaborate to tag intents before the models can identify them, and predictive models select the best identified intent based on contextual data.

    Semi-supervised learning moves us one step closer to the AI of tomorrow. As the name suggests, there is less human assistance required using this technique, and much more of the process is automated. Here, humans tag a small set of training data, and machine learning annotates large-scale data and only flags low-confidence results for human review. Analysts develop new answers or logic for new intents, but the system gets smarter over time, and machines continuously learn from new data coming in.

    Both supervised and semi-supervised AI are human-assisted models, and most businesses will be best served by these machine-learning techniques. While we’re seeing some fully automated AI answer-generation technology through personal assistants like Siri or Alexa, there’s not a lot of downside there when the system misunderstands the consumer’s query or returns a wrong answer. In a business interaction, however, there’s a lot more at stake. Imagine how long it would take to win back a customer’s loyalty after a disappointing experience with a branded chatbot persona, for example. No business can afford the customer churn that comes from a broken experience.

    That’s not to say that self-learning AI–which uses unsupervised machine learning to identify new intents, update the model, and generate new answers for queries and new logic for transactions– is pure fantasy. IBM Watson learns on its own and generates new answers to new questions, which we saw when the machine dominated its human competition on “Jeopardy.” But autonomous learning for transactional intents, where there are so many possible actions a human could take in different business scenarios, is still science fiction for now.

    Despite significant investment in AI and the inevitable advances we’ll see over the next five years, modern machines just can neither handle every nuance of human interaction nor the diversity of human emotions, evolving phrases, choices and possibilities that go along with those interactions. So, while it’s exciting to dream about where AI is headed, we also need to recognize that AI has only evolved to become a productive counterpart to the human mind. For most businesses today, that’s all the AI they need.

    tag

    Machine Learning

    Big Data

    Predictive Analytics

    Weekly Brief

    loading
    Top 20 Prominent Artificial Intelligence Solutions Providers in APAC - 2024
    ON THE DECK

    I agree We use cookies on this website to enhance your user experience. By clicking any link on this page you are giving your consent for us to set cookies. More info

    Read Also

    Cultivating a Sustainable Future through Collaboration

    Cultivating a Sustainable Future through Collaboration

    Jiunn Shih, Chief Marketing, Innovation & Sustainability Officer, Zespri International
    Mastering Digital Marketing Strategies

    Mastering Digital Marketing Strategies

    Tasya Aulia, Director of Marketing and Communications, Meliá Hotels International
    Building a Strong Collaborative Framework for Artificial Intelligence

    Building a Strong Collaborative Framework for Artificial Intelligence

    Boon Siew Han, Regional Head of Humanoid Component Business & R&D (Apac & Greater China), Schaeffler
    From Legacy to Agility Through Digital Transformation

    From Legacy to Agility Through Digital Transformation

    Athikom Kanchanavibhu, EVP, Digital & Technology Transformation, Mitr Phol Group
    Change Management for Clinical Ancillary Teams: Aligning Practice with Policy and Progress

    Change Management for Clinical Ancillary Teams: Aligning Practice with Policy and Progress

    Ts. Dr. James Chong, Chief Executive Officer, Columbia Asia Hospital – Tebrau
    Digital Transformation: A Journey Beyond Technology

    Digital Transformation: A Journey Beyond Technology

    John Ang, Group CTO, EtonHouse International Education Group
    Building A Strong Data Foundation: The Key To Successful Ai Integration In Business

    Building A Strong Data Foundation: The Key To Successful Ai Integration In Business

    Richa Arora, Senior Director Of Data Governance, Cbre
    Transforming Tollways Through People, Data and Digital Vision

    Transforming Tollways Through People, Data and Digital Vision

    Carlo Cagalingan, Chief Digital Officer and Chief Information Officer, Metro Pacific Tollways Corporation
    Loading...
    Copyright © 2025 APAC CIOOutlook. All rights reserved. Registration on or use of this site constitutes acceptance of our Terms of Use and Privacy and Anti Spam Policy 

    Home |  CXO Insights |   Whitepapers |   Subscribe |   Conferences |   Sitemaps |   About us |   Advertise with us |   Editorial Policy |   Feedback Policy |  

    follow on linkedinfollow on twitter follow on rss
    This content is copyright protected

    However, if you would like to share the information in this article, you may use the link below:

    https://artificial-intelligence.apacciooutlook.com/cxoinsights/truly-autonomous-ai-not-practical-for-most-businesses-nwid-4401.html